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SUMMARY

This paper gives a simple and exact method of calcu-
lating the lvﬁ disiribulion on thin wing sections. The
most essential feature of the new theory is the introduc-
tion of an ideal angle of attack,” this angle being
defined as that at which the flow enters the leading edge
smoothly or, .more precisely, as the angle of atfack al
which the lifei at the leading edge eguals zero. The lift
digtribution a?t thie particular angle is shown io be a
characteristic | | property of the section and has been
termed the ““basic distribution.”” It is shown that the liftof
@ wing section: may always be considered fo consist of (a)
the basic disirtbution and (b} the additional distribution,
where the latter is independent of the mean camber line and
thus identical for all thin sections. The specific reason for
the poor aerodynamic qualities of thin wing sections is
pointed out as being dueto the fact that the additional lift in
potential flow becomes infinite at the leading edge.

The theory s tn consequence adapted to describe some
of the properties of actual wing sections. It is estab-
lished that the esseniial parameter occurring in this
analysis 1is the radius of curvature af the leading edge.
The location and magniiude of the maximum lift intensity
is defermined. It is further pointed out that the actual
slope of the lift curve is dependent on this parameter.

The theoretical lift distribution 1is compared with the
digiribution obtained by direct measurement on @ number
of the more convenitional wing sections. The resulis
check satisfactorily and may be considered as a confir-
mation of the validity aof the theory.

The new theory will be of value in the further improve-
ments of airplane wings. It is poinied out that air-
planes should be operated near the tdeal angle of attack.
The theory will also be of use in calculating the structural
strength of wing seciions.

INTRODUCTION

The existing theory for thin wing sections leads, in
general, to an infinite velocity around the front edge.
The condition is shown exaggerated in Figure 1. To
avoid this inaccuracy a nsw condition has o be intro-
duced. This is the requirement of a smooth flow
around the front edge. It will be noticed that this is in
analogy with the well-known Kutta condition for therear
edge. The new developments lead directly to the estab-
lishment of an angle of meximum “entrance efficiency.”

It has been found possible to extend the theory also
to thick or actual wing sections. The most important
parameter in this anelysis is the radius of curvature
at the leading edge.

Even with the advances made in the field of experi-
mental aerodynamics, the mere knowledge of the
expected total lift and moment of a wing section fur-
nishes but a poor guidance, if any at all.

The usual theory of wing sections is only capable of
giving the total lift and the total moment on a wing
section, the new gives also the pressure distribution.

The main object of the study was to establish the
pressure or lift distribution on the actual airfoil. On

FIGURE 1

introducing the requirement of a smooth flow at the
entrance edge the author has been able to determine
the theoretical pressure distribution on a thin wing see-
tion. 'Thisdistribution is of interest in the study of the
properties of actual wing sections of similar basic shape.
This distribution occurs only at a given angle of attack.
This angle, which is a given characteristic of each air-
foil, has been termed the ideal angle of attack.

It is shown that the lift distribution may be con-
sidered to consist of the basic distribution at the ideal
angle plus a given function multiplied by the angle of
attack as measured from this ideal angle.

This function has been determined theoretically for
actual wing sections.

Considerable simplification in the method and a
resulting greater applicability of the theoretical dedue-
tions to actual testing have been obfained. The
theoretical prediction of the effect of changss in the
airfoil has, in particular, been simplified.

The new theory has been successfully applied to some
of the more frequenily used wing sections for which
test data were availeble. For this work we feel greatly
indebted to Mr. R. M. Pinkerton of the Langley
Memorial Aeronautical Laboratory.

It is on a precise knowledge of the expected individ-
ual réles played by each element in their contribution
to the whole that the road to future developments
must be based. As usual, it may be said that no com-
prehension of the effect of arbitrary chenges may be
arrived at without the guidance of the theory. It is
the exclusive merit of a rigid theory to limit the num-
ber of possible variables to a reasonable number, thus
eliminating unnecessary experimenting, and of guiding
the work into definite channels from which ultimately
the useful facts are bound to emanate.
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PART I '
GENERAL !

In order to avoid any repetition of the theory of the | In order to develop this integral further we write

airfoil as it exists at the present time, we will refer !
' einz_e-_in:

2

_l' E(G"‘ c—il:)

S sin nz=
2 sin nz +§ 3

1. ’
== 5 Z(er—et) !

Let. }
. 3 etnz=et=+e2ts+eux+ o, TS’

- § i Thls series is not convergent and 1t<.{ value is per-
o . _ ] fectly indeterminate.
FlouzE 1 This difficulty can be avoided, howev er, by the fol-

exclusively to the works of Glauert as given in Refer- ] lowing stratagem. We write

1

ence 1. -
o s S=et*+ L ir | L, gv)r
We will in consequence adopt the nomenclature used : o, 4 ¢ ‘,e
by him throughout this study.! The system of coor- — St —gs_ iz | _gu-lz_gnz

dinates is shown in Figure 2. Y

Glauert’s work is in agreement with the principles | By addition
developed by Max M. Munk. : gt ginx
SA—ets)=¢t*—e!*2 or S=

CALCULATION OF THE ANGULAR DISTORTION ' 1—et*
The angular distortion e plays an important réle in | Similarly '
the following thegpry. In fact, if the e curve is known B " Zgins o SL='8—?: et
for a wing section, all the characteristics are obtained » 1—et
with ease. Then

ei:__ehu e-f:_ e—hu

Just in the same manner as an airfoil is considered as - S—8,= TR s g s
8 distorted straight line, its almost circular image may N _ :
be considered as & distorted circle. B e o s
The angular distortion is given by e=—2 A4, cos nd; - T—=eft
the radial distortion by r=2 4, sin n ¢ where _
1+ e-hw+ e~1(n—1)a
Assgivenss 2 [rsmnoder - ] L T T e
. : z
We may then write and 3 sin nr= 1 itgu )
2 o,
=— Z cos n 0, J; reinng d o g1 4 g=ia=1)2
where ¥= '—T_'—er:——*—

where the symbols 6, and ¢ are used in order to dis-

tinguish between the two different kinds of variables. 3 sin nz= — L ( eits 4 gils )
This expression can easily be transformed to “‘—e*“
==L (s - ; 1 .
€ = ilj; risin n(6—0,)+sin n(@+6)}de. I | =3 °°t_‘2' + -2.1, ¥

From equation I

} With the exception that ¢ has been replaced by the more logical e; at 7=1 and with
< correaponding to z=0, and the lift coefflelent Cr is used instead of the British r 8-+8 g-— 9
Ky (Cr=2Kr). Nondimensionsl equatlons are used throughout the report. =— —f (cot 24 cof - g +‘t\//; + gy ) d 8.
* (Reference 1, p. L.)

412




THEORY OF WING SECTIONS WITH PARTICULAR REFERENCE TO LIFT DISTRIBUTION 413

The fu.nctions ¢y and ¢y containing the arguments
6+6’ and -—--—: respectively, have infinitely high pe-

nods and thus furnish nothing to the value of the inte-
gral. Therefore

_ 1 (- a+0.
=5 A r{ cot 5

In order to separate the independent variables ¢ and
6., we write -

cotzcot =1
Cﬂt(‘,—«,) (<cot = otz)) ((ﬁ:IB))

t-—i)de II

A

where A==eot and B= cot— Then
cot (3 + 55) +cot (— —,—‘
_AB— 1+AB+1
TA¥BT=4A+EB
_(AB—-1) (—A+B)+(4+B) (4B+1)
RE— 42
_24(1+ B
B*— 42
and
cot(ﬁ-;-a’) (G 8, 2cot2<1+cot-2)
2 2 t"%——cot’g
This gives

lf cot2<1+ t’e—)de -
-

s

cot? ——cot-

Using coordinates given as fractions of the chord with
zero at the leading edge (Figure 2),

1—cos =2z and sin® 0=4z(1 —z),
we obtain

6 sinf _2+vx(1—z)_ (1
ot =T o056 2z z %
also : &
2
r=ga 0 and df= e

Introduced in ITI, this glves

et @)
(1 1) &-1)
=%J:rd0l/_a—’—1A1£

& =
_Lp \/i‘l (%)
T_[ ydz é—-;—tl—l)x(l—-:r)

* (Reference 1, p. 2.)

and finally ) i
= — = y z
e Ti; (m—z)z(1—2) v

It is important to notice that the z-axis must coin-
cide with the line joining the extremities of the mean
camber line as indicated in Figure 2.

The integrand becomes infinite at the point z=z;.
The value of the integral is, however, finite.

Introducing P= :/:c—(f? » we have

z)
qulj: Pdz

w T;— %

This relation may also be written
- f *Pe—Pan-n 4. v
' o r1—

That is, from the value P, at z is subtracted the
value Ppn—p ab the point 22—z, which Jis located
the same distance from the point xy, but in the opposite
direction.

This integrand does not become infinite at any point
0<x<1, and the mtegra.tmn can be performed for
any profile.

The calculated ecurves for three typical wing see-
tions are shown in Figures 18, 19, and 20.

CALCULATION OF & AND

The calculation of ¢ and ¢ is more difficult, due to
the fact that the integrand becomes-infinite if the
derivative ' is different from zero.

Let us calculate the confributions to ¢ from the
element between 0 and Ax where Ar is a very small
quantity.

Assuming ¥ to be a straight line between 0and Az,
we observe that the contribution to the integral,
equation IV, is

s yipde s 9a
Agp=— i yw’ [—— yJ_:L y— and

TJo

for Az=0.05 _
Aeg= —2.85Y0.05 VI

If ¢ is curved upwards between 0 and 0.03, the con-
tribution to the integral is somewhat larger. Similarly
we obtain Ae=+2.85y0¢s as the comtribution to ¢
from the element adjacent to the rear edge.

GRAPHICAL EVALUATION OF e:

Plot the function P, see Figure 3. Construct the
curve carefully near 0 and 1.

To find e, draw lines as shown in figure. It will be
noticed that the integral

1Pdz

€ = e

! T 0L —T
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also may be written

1
e=——1 tan o dz
J
P
\ o, B
(-4
¥
g._,g(, x7
FIGURE 3

VIL

where o« is the angle formed by a line drawn from

(1, 0) to (x, P) as indicated in Figure 3.

_Infinite values of tan « are avoided by subtracting
corresponding values of P as indicated sbove. This
amounts to folding the area around z, and taking the
integral for the resulting difference, Figure 4. Since
P crosses the z axis at-right angles, it will be noticed

. : <

T FIQURE 4 :
that ¢ and ¢ actually contain elementd of Infinite
height. The area formed is, however, finite and can be
obtained graphically or by the calculation shown above.

by



|
{f
,/ REPORT No. 383

ON THE

-

HEORY OF WING SECTIONS WITH PARTICULAR REFERENCE TO THE
LIFT DISTRIBUTION

PART 1I
: ANALYSIS OF THE EXISTING THEORY

{

The nond:jmensional pressure P as given by Glauert
may be written in the form

P= 4(a+q)1&/1—1+[4 (e—ea) VzO—2)]

(from reference 1, p. 5) or

—P=(a+q)«\l,—— -—E[(e;—e) J2(1—2)] 1] YIII

(The function /z(1—z) =R eppears throughout the
work and is gaven for convenience in Table I.)

14
f 3

7z
(er-€)R

d
a‘;[{G)‘GIRj

&g
FIGURE §

Now that we have actusally been able to determine
the value of the distortion ¢, we are able to express P
8s a definite function of the position z.

This work will be taken up in Part III.

It is very interesting to notice that the second

function—d% [(e—€) vYz(1—2)] is vitel in determining
the pressure distribution on the section, while it does
not affect the total pressure or the lift of the wing.

[ G e =2 da=0.

The integral is identically zero, Figurs 5.
The total pressure on the wing is thus given by

4(a+ﬁ)ﬁ1\/; dz

1 . L« 1.
where E—I—cot 2—a.nd dx=ZSInada

x o . a
4(a+el)j; cot§s1n Fcosy de

=4(a+€1)ﬁ= cos? % de

a

=8(a+e1)f'cosﬂi‘d§
=8(at¢q) [é ;-l—i sin a]:
=2(a+e)r

which is the value of the absolute hft coefficient in
accordance with th15 theory.

The expression d_:z: [(a~e)yz(I—2)] is entirely a
function of the shape of the airfoil and is thus not
altered w1th a change in the a.ngIe of attack.

FIGURE § . FIGUBE 7

Let us express the equation
= (ate) \/To1- L [0~ 22 us
4 1 z dz -E.[ € z Z)] 88

1
ZP=’Yz“’Ys

The distribution of v; is indicated in Figure 6. Itis
infinite at the leading edge and zero at the trailing
edge. The distribution of 7, is indicated approxi-
mately by Figure 7. The value of this function is also
infinite and zero at the front and rear edge, respec-
tively, but the net area equals zero.

For a point close to the front edge we are confronted
with the actuel determination of the value © — « ob-
tained by subtracting v, from 7;.
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This quantity is determined as follows:
Let us write for a point close to the origin

1 Pam(eta) - (09 /)
=(at«) —‘/If—x—(q-—e) E“}Tx-l--\f:ﬁi g—;

The last term Az O is negligible compared with the
other terms and therefore

‘2 PA== -\/IA_-Z (a-{-%—ﬁ-!-% E).

This pressure is zero only if ¢=—2a¢—¢. In all
other cases the pressure at the very edge.is infinite,
indicating that nonpermissible conditions are imposed
by the theory. This relationship could have been
expected. It is possible to show directly that the i
front stagnation point occurs at the angle —2a—¢;.

In order to obtain smooth flow past the front edge
of the infinitely thin airfoil it is necessary that the
above relation be satisfied, that is

= —2a—e. IX*

It is noticed from the expression just developed for
the pressure near the front edge that this requirement
is actually a necessity in order to avoid infinite pres-
sures at this point. We may even go a step further
in stating that the existing theory of thin wing sec-

tions fails to give the true values of the lift and

moment, except for the definite value of the angle of !
attack: [

&gte

=

ar=— X

Let us call this the ideal angle of attack. In all
other cases the ususl theory leads 'to infinite pressure
differences across the leading edge. The assumption
of & noncompressible fluid, on which this theory is
based, is obviously violated. The theory breaks down

in & precise study of localized effects.
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This angle plays in the aerodynamic {theory of air-
foils a réle just as predominant as that o}i the entrance
angle in the theory of turbines. While jn the theory
of turbines the question of entrance agles is com-
pletely settled, enough thought has probslbly not been
given to the corresponding problem in aprodynamics.

DISCUSSION OF EXPRESSION FOR PR
WING SECTION

SSURE ON

Glauert gives as expression for the nur.tmencal value
of the veloclty around the airfoil: }

g=V[1+ (a+te cot6+(a+q)cosec..§l+§5]

(Refererice I, equation 14). e will obseyve that near
== no difficulties are encountered, smca the infinite
factors actually will cancel each other at!#w=r due to
the Kutta condition. i

As 6—0 we run into difficulties. We lobtain for a
point 8=+ As, i

[1+(a+eo)A8+(a+q)M '}}5

X1

Glauert’s method of calculating the plt.ching moment
on the basis of equation 14 is not strictly permissible.
The factor [(a+¢) cot 6+ (a+¢) cosee’ 8] can not be
treated as a small quantity near the origin, and the
squares and products of such large qu antities can not

: be neglected as compared with unity.

" We know the numerical value of the veloeity can not
become less than zero and the corres;pundmg pressure

not, greater than pV’ There is also a limit to the

meaximum value of the velocity. This will not pass
the sound veloclty of the medium, and the greatest
negative pressure is, in consequence, about one-half
atmosphere.?

The difficulties are, however, dispensed with by
introdycing what we will call the front edge condition.

It will be noticed that if ¢ happens to be equal to
— (2a+¢), there is no infinite factor in Equation XI.

t Disregarding the fact that the factor mentioned above can not be treatod as
small near the origin, the results may be considsred as sufficlently accurats for ai}
pointa beyond z=0.1.
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ON THE THEORY OF WING SECTIONS WITH PARTICULAR REFERENCE TO THE
LIFT DISTRIBUTION

PART IIT
DIRECT CALCULATION OF THE IDEAL ANGLE OF ATTACK

€.Te6
2

o= —

If the e-curve is not found we may calculate a; as .

follows: e=—X A, cosn @

— =+ Ayt A+ At .. ..

—a= Ag—AtA—As . ..

— (et ea)=2(4+ds+ A4+ ... .)
=2%_J;'rde(sin06+sin25+ D

Thisis equal to the imaginary part of %_J:rd 62 ¢'* ¥ with
n=0,2,4,6, ...
But Zet¥ (n=0,2,4,6, .. .)=
1 %
f—gd R

cos §—1 sin #
—2¢ sin @

Therefore — (g q)=gf‘rd6 cot @

]
but — and dé= &
sin @ sin 6

We obtain — (g + &)

_2 2y 2d« cos 6
~r osmosma”e“f ydr =g

_S 1—-2x 1 (Mydr(l—22)
2| var e i

o [A=2)]
_1 ydz (1—2:t)=_f ydz (1—22)
2o ka-of 2%Jo B <
A 4-point method gives the ideal angle in degrees,
with sufficient accuracy as follows:
=623 (y1—¥s) +47 (12— 1)

where 1, ¥z, %, a0d ¥5 are the ordinates of the mean
camber line with respect to its chord at z=0.542,
12.574, 87.426, and 99.458 per cent chord, respectively.

PRESSURE DISTRIBUTION ON THE THIN WING AT
a=aoar

Rearranging, we obtain easily from Equation VIII:

P=4 fz(1— xdx 1/(1

+ete(l— 2:6)]

[2a(1 z) <TIT

and with
&t el'

ar= — 2

P"_é‘mdz _‘/ (1
+2e<§—- )+51:z:]

Pr=4z(1— xdx 1[—j[(-—eo+e)

+ (g —2e+e)z].

This pressure distribution may, in order to fix our
thoughts, be termed the basic pressure distribution of
the section.

Writing +/z(1—z)=R, we have N

P;=4.Rg';+R[e &+ (o—2¢+ g)x] X1y

[ &(l—2)

or

This is the exact expression for P at the ideal angle of

attack for a thin airfoil. In this expression Pis the

pressure difference and ¢ the distortion at r, & and ¢
are the values of ¢ at x=0 and at r=1, 1espectively.
The equation is readily integrated and yields the value
of the lift L;==(a—«). The basic distribution
curves for three airfoils are shown in Figures 21, 22,
and 23. The comparison has for convenience been
made at the same total lift.

It is noted that the center of lift of the measured
distribution is nearer the leading edge than that of the
theoretical distribution. It is believed that this effect

is partly due to the finite aspect ratio of the airfoils on

which the measurements were made. The exact effect
of the finite aspect ratio is not simply to change the

| direction of flow as considered by the usual theory, but

more precisely to change the local curvature in a cer-
tain prescribed manner. The flow near the leading
edge is [ess affected by the “downwash” thus produc-
ing a lift which is greater than that based on the
average direction of flow. Near the trailing edge the
reverse is frue.
The theory of thin wing sections must thus be based
on the following assumpfions:
I. The flow must leave the frailing edge
smoothly (Kufta’s condition).
II. The flow must enter the leading edge
smoothbly (front edge condition).
417
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In all other cases the theory leads to infinite pressure
differences.
The first condition requires a circulation

T=xV (a+4q),

while according to condition II, the angle of attack
must be equeal to

+
o= -3,

On basis of the theory developed above, we are
actually able to explain certain properties of the lift
curve. For instance, to obtain an efficient high lift
wing section, it is obvious that ¢ should be made large.

The circulation at this condition point (I and IT
satisfied) is equal to

g) and the lift Li=#n{e—¢). XV

T [=% TV(G)_

Note that both «; and L; are functions of the shape

of the foil. It is impossible to devise a more efficient
flow than that satisfying the above conditions.

Thickening the airfoil does not improve the condi-

tion. It only permits a certain violation of condition

II with less disagreeable consequences. This fact

- I

explains why the Munk theory, acknowledging solely
condition I, gives better results when applied to thick
airfoils, while the theory actually is developed for
infinitely thin foils.

The fact is that the thickening of the foil makes it
less efficient, but gives it & certain immunity against
the losses caused by incorrect flow past the leading
edge. This will be shown later.

The above deductions explain several facts relating
to the shape of the lift curve. For instance, why the
most efficient angle of incidence, in general, is greater
for e section with a greater curvature at the leading
edge. We know that the minimum fnctmn loss clearly
must be expected to occur near

FIGURE §

ate
a=a1.=——0 .

The entrance loss is evidently & function of |a—ey].
The case is quite similar to that of the entrance loss
in turbines. We may write for this loss

L=8-|a—ar|"

Experience has shown that 4 is very large for a sharp
leading edge and that it decreases rapidly as the
thickness of the airfoil is increased. It is, however,
difficult to separate this loss experimentally.
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CALCULATION OF EXPRESSION FOR THII BASIC LIFT
In analogy with the calculations for «, we obtam

Ex__A0+A1
&= A0+A1+A2
a—e= 2A4;+24;+ .. ..

=2(A1+A3+‘A.+ . .)

q_%=§ﬁrrd0(sin 0+sin 30+ . . .)

or the imaginary part of %ﬁrrdaze'” whereni=1,3,5, .

but

z

g€ 1 1 i1
sodd

TI—% oW g% _2;5inf 22sné

and
11 2y 2dr '
a=e=+ frdosmﬂ osm&sﬁ%?smﬂ -
=+8 tydz _ l __ydz
o SI° 0 . 1r o [x(1—2)]t

! ydz lydz
Z- J o [

The approximate Gauss’ method gives: L;=69(y;-+ys)
+6.8(ys+ v +3.6y; where y; is tuken at r=50 per
cent C.

This function has considerable significance as being
the lift at the ideal angle of attack, or the lift of the
wing when the flow is theoretically correct around the
leading edge.

It is noticed how the elements near front and rear
are of the greatest importance.

From Equation XVa we obtain

Azy’AZ
o Axt dz

and

XVa

Az
=y’ﬁ g-g: +2y’Ax'a

This expression shows that in order to obtain a high

basic lift the angle near the nose should be steep.

The fact that z appears only in ¥ power, shows that
the steepness need not extend for any length. In
fact, the best airfoil would be the one shown in Figure 8
if it were not for the fact that we must maintain poten-
tial low. Experience shows that any great curvature
near the rear edge is poor aerodynamically. It is also
in contradiction with the requirement of a small center
of pressure travel.

ADDITIONAL PRESSURE WHEN THE ANGLE OF INCI-
DENCE IS DIFFERENT FROM THE IDEAL ANGLE
We will observe from the expression for the pressure

distribution, Equation XIII, that the increase in the

pressure due to a change in ‘he angle « is equal to-

4
m (a—oy) (1—2) or

P'='4 1(0! a;)'=4 (ot—a;) XVI
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The expression is, as pointed out, obviously far from
giving the physical facts.

The infinite pressure, of course, does not occur. In
the limiting case sound velocity is reached, while the
other extreme corresponds to a velocity of zero at the
stagnation point. These facts are neglected in the
present theory.

If the angle of attack is different from a; we will now
consider what sctually takes place near the nose. We
restrict ourselves to velocities considerably less than
the velocity of sound.

The velocity of potential flow near the surface of &
circle is given by the expression:

d . . K
L= —2iVe® [sm(a-l— 8)+z mV:l'*

Let the rear stagnation point occur at &=m.
This condition is satisfied by:

O _2iVe# [sin (at8) +sinal
For small values of « and & we write:

ds . d y
a%D=—21Ve“ (2a+ &) and ifégl=2? (2a+®).

Let us transform this circle into an ellipse:

2

;‘=z+(;—ﬁ.

Y¥e have then 4 .
{_,_@

=1 28

2
%= 1 —%ﬂ(cos 2%—1 sin 28)

%g- 1—B{cos 2&—1 sin 2&)

For small values of &

d .
£=1—5(1—21¢I>),

neglecting quantities of higher order than the first.
Further:

d H
5] = -+ copy
This gives for the square of the velocity near =0

. (2a+ )2
WAV =Byt @3B
With 8 close to unity, we may write:

(2a+&) -1 (2a+ 3)?
I—8)+ 4% 1—B\
<-2—) +&°

w?=4V?

This expression gives the square of the velocity near
the front edge of a flat elliptical cylinder inclined at

*{Reference 1, eguation 10.)
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an angle « toward the direction of flow at infinity and
equipped with a circulation sufficient in magnitude to
locate the rear stegnation point at the corresponding
end point of the major axis. The flow is indicated
schematically in Figure 9. Reshaping of the rear part
of this section so as to simulate a flat airfoil does not
materially alter the flow at the front edge.
It may be shown that:

)

4q 8
where p is the radius of curvature at the nose and
¢ the chord.
Consequently:
]
wR=T3 (§a+ &)
2t+e

We are more interested in the difference befween
the pressures at the upper and lower side of the nose.

FIGURE §

The pressure at & differs from the total pressure by

i
P,= (ga-!- @)
__P+ @2 '
¢
and at —® by
—_ 1
P,:%Lﬂ. _
e
The difference is
P=g2® XVII
LI )
c
' This function has & maximum at &=22.
This maximum equals
P.,.,=4——72_ or referred to the ideal angle Pn
- 4P
Ye
—glo—a), XVITI

25
4

It may be shown that the point of the airfoil corre-
sponding to <I>'*’=2—c'2 is located at z=§ or at the focal

point of the ellipse.

Tt will be understood that the local flow very close to
the nose is not very dependent on the shape of the rear
part of the foil, provided the Kutta condition is satis-
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fied; that is, that the flow leaves the circle at &=z as
prescribed above.

The greatest pressure difference across the nose thus
occurs at & point midway between the center of curva-
ture and the front edge.

Its magnitude equals
Pm z = a_tél'
=4 %
c

It will be noticed that the point is usually located
less than 1 per cent from the edge and that the magni-

L=
4
FiGURE 10

tude of this pressure difference for ordinary airfoils is
usually less than 4¢ except at the highest angles of
atteck. (Table VI.) )

In addition to the basic pressure distribution at ar
given in equation XIV, we must add the distribution
due to the difference in the angle of attack. The latter
can be obtained as follows: For points near z=0, we

employ Equation XVII and for points near z=1, we !

employ Equation XVI. By applying our analysis to
& straight Joukowsky section, we find further that no
grest change in the lift per radian takes place. That is,
the concentrated lift at the nose of a thin section will
appear as & distributed lift of approximately the same
magnitude. The center of this lift will ther move
from the 25 per cent location to a somewhat greater
vealue of z. In plotting the curve, we will consider it
sufficiently accurate for most purposes to determine

P nes (Equation XVIII) at z=§. and to draw the line

as indicated in Figure 24. The ares or total lift per
radian obtained in this manmer is less than 27 and
almost exactly equal to the observed values. An ex-
pected increase of lift along the remeinder of the airfoil
is, for practical purposes, almost completely nullified
by the frictional losses, Table VI and Figure 25.
The total lift of an airfoil is then mathematically
expressed as:
L=L;+a, (a—ey) XIX
There exists a slight increase in this coefficient a, with
a decrease of the radius of curvature at the front edge
(see Figure 25). It thus probably serves no purpose
to refine the above simple method by considering
second-order terms or departures from an elliptical nose.

EXPRESSION OF MOMENT ON THE AIRFOIL

We are on basis of the theory here represented able
to furnish a clear picture of the question of the center

of pressure travel. The total moment is represented
by: (1) The moment of the basic. distribution and
(2) the moment of the additional distribution.

The center of pressure of the additional distribution
is for the thin airfoil located at==0.25 ang for a con-
ventional airfoil (and potential flow) say, at x=0.30.

The magnitude of the travel of the center of pressure
thus depends on the_basic lift and on the moment of
the basic lift about this point. '

The magnitude of this moment M equals‘:

ﬁ ' Pu(e—0.25)de

= ﬁ ‘42dz f—x [ —o)y2(T=a]]

It may be written
S 1 D
—[4x(e1 —e)+/z(1 —x):[)-k j; 4(e— &) Yx(T—z)dr
or

o . 1 I 1 *
M= 4]; (e —e)+/a(l— :c)dz:=4j; (a—e)Rdr XX

This integral is, in general, positive due to the fact
that & ordinarily is the greatest value of . (See fig. 5.)
Anygreat accuracyin the total moment serves no par-
ticular purpose. The center of pressuve of the addi-
tional ﬁétlibution is actually located near »=0.3,

———
- ~

- AN

L]
FIgGRE 11

however, and the actual moment of the basic lift then
differs slightly from Equation XX.

The simple derivation of the above moment in
accordance with the present theory is, however, a
distinct advantage, and peculiarly enough, the center
of pressure of the additional distiibution actually
tends to shift forward, due to the effect of the finite
aspect ratio.

It is interesting to know what happens if we keep
the end values fixed at ¢ and ¢, but decrease the area
¢—e. This is indicated by the two dotited lines @
and b in Figure 11,

M is decreased, decressing with it the travel of
the center of pressure. Curve a corresponds to M =0
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small travel lof the center of pressure.
The corrésponding appearance of the airfoils is
given in Figures 12 and 13. Figure 12 corresponds
|

with & ﬁxei center of pressure, b to a small M and

to the with Af=0. S shape is necessary as

/E’_\/
‘. Ficone 12

shown by Munk. The integral contains in this case
a sufficient- number of negative elements.

Negative elements are avoided in curve b where eis
stationary for a considerable distance from the rear
end. This leads to the foil shown in Figure 13, with

—

FigURE 13

a straight rear end inclined at a fixed angle 8. We
know from experience that it is quite difficult to
maintain potential flow along the upper side of an
airfoil if the change of direction is abrupt. For this
reasan the fil in Figure 13 with no change in cur-
vatureis proBably superior to theoneshownin Figure 12.

TBE IDEAL AIRFOIL

We keep int mind that we do not want any large
crange in the .‘oca.tion of the center of pressure. The

foil arrived at so.far should look like the one shown
in Figure 14. :

It is evident from the preceding analysis that o and
L; should correspond to the coefficients af cruising
speed or at the speed for which the greatest efficiency
is desired. With a well-rounded front edge the im-
portance of the front edge requirement is lessened,

but not removed. The well-known poor characteris-
tics of an airfoil approaching the mathematically

Ficurz 14

o
——
Vs =~
e ——— =~
—
FicuRx 15 FIGUre 18

“thin"” section is due to this cause, as has been |

pointed out. It may be expected that the thin section
at the optimum angle of attack a; in a flow without
great initial turbulence is the best of all airfoils.

But even for thick airfoils this consideration must
be given proper attention. We must give as liftle
occasion as possible for the creation of disturbances
near the front edge. The study of the airplane nose
is thus a problem of considerable importance. The

421

design shown in Figure 15 will permit a large ‘“‘most
efficient’ lift as far as the entrance condition is
concerned. It leads, however, fo a great curvature
of the upper surface of the foil of conventional thick-
ness. We know from experience that such designs

FigTRE 17

cause premature turbulence. It is pointed out that a
greaf increase in maximum lift above that of the con-
ventional airfoil might be obtained by a foil of the
above proposed type in conjunction with an auxiliary
deflecting plate or guiding vane, located above the

a / 2 3 4 5 & 7 8 8
Figurx 18.—Distortione. Clark Y alrfoll

g

point of the upper surface having the greatest ordinate,
as indicated in Figure 16. This scheme has little
justification or value in conjunction with airfoils of
conventional designs. It is hoped, however, that
such design might lead to a thicker and narrower

g .+ 2 3 44 S5 & 7 8 9 10

Ficurs 19.—Distortione. N.A.C.A. M-6 alrfofl

main wing section, which is sometimes desirable for
structural reasons.

1 AUTOMATIC ADJUSTMENT OF THE ENTRANCE ANGLE

If a “thin’ wing section should be employed
successfully as an airfoil, it would at least be necessary
to have the leading edge adjustable. The importance
of the angle at the very edge has been pointed out be-
fore. This end has unconsciously been obtained by
rounding the front edge. This is equivalent to

permitting change in the entrance angle and thus

in the very shape of the foil. To make this point

clear we refer to Figure 17, where b is the *“shape’ of the
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airfoil at low angles of attack and @ at high angles.
It should be pointed out that the actual “edge” of

2 3 A 5
F1euRE 20.—Distortion e,

e 7 .8
N. A. C. A, 84 alrfoll

50

the section and of the associated ‘thin’’ section is the

momentary location of the stagnation point. A
1.0 T T 1
e e O e Basic distribution
. P/q ] i ~IT
r'§-u.\
a
a—1 Theorellca[ chs frxbuflon
&0 —Q—Measured..
\
\3
20—X<
A N
P/ N
\ Y
7 &\ CN =t/2
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) \\b\
*L\
o 2 £ .6 & La

FI1GURE 21.—Lift distribution, Clark Y airfoil

thick nose is thus virtually equivalent to an adjust-
able front edge. The thicker the section the greater
is the possible change in the shape of thefoil. That is;

1.0 T T T T
- Basle disfribution
g =
—

0 ——
4.0 —Theareficdl ol’sfr/bufzon

) —~Q~—Measured
30

\
\Y
\
20 Q
\}
£2q a
\‘\ G =.94
IX3] -
S
S
~ \J\\N
o 2 g A & .8 Lo

FIGURE 22.—Lift distributlon. N. A, O. A. M-8 airfoil

the efficiency curve is flattened. The thin section
on the other hand does not lend itsel to any such

COMMITTEE FOR AERONAUTICS

The thickness of the foil beyond the ndlse is undesir-
able aerodynamically, since it causes 8 certain in-
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" Fieurk 23.—Lift distribution, N A. O. A. B4 airfg)
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Note: P=4 ’:_’ (a—ay)g. Ordinatesarsequslto Plfor a—a.-—:- rad.

crease in the fluid velocity on both sides of the foil.

“flexibility,”” hence its poorer characteristics.

The least resistance is, however, introduced if a
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fish-shaped dection is used in conjunction with the

desired type. of nose. The pressure distribution at |

zero angle of'a foil similar in shape to the wing section
as regards 1:;'.hick:na£s, but with no curvature of the
mean ordinate, may be determined in conjunction

with the testing of each foil.
7
2
s'\?r\
h\\\
5 3
© 1
£ It <
Qg l_ %]
L= Y_‘T.
gl=
<< | -
2 3 >[-
X
! C
3
o .Of a2 o3 (7] .05

Nose curvature, pe ’
Ficure 25.—Slope of the lift carve

SUMMARY OF NEW FORMULAS

With B= /z(1—2), g=1

and the 2-axis coinciding with the chord of the mean
camber line.

_if‘_y@x_

€=2=%) -2 R

ate_ 1 [lydz(l—21)
2= ) R

(A= —2.85Y5.05 Aey=2.85%p.55)

ar= —

a*=623 (y1—ys) +47(y:—vy.) degrees where ¥, Ys, Yoy
and 7, are taken at z=0.542, 12.574, 87.426, and

99.458 per cent chord. (a,is measured with respect to
the chord of the mean camber line.)

P;=4Rg—;+%[e—eg+ (0—2e+ ¢)2] lift intensity at

« O=dar

'P,=41—§ (a—ay) additional lift valid for 2>0.1.

P.=4a—/_2ﬁ; maximum Jift oceurring at x=§
Ve

M= 4]:@1 —¢e)R dxr moment at x=%

L= (e —&)= L 1%,—?’ © (AL;=2y Ack) ideal lift.

L;=869(y:+ys) +6.8(ya+1.) +3.61:
where y; is the ordinate at =250 per cent chord.

LaNGLEY MEMORIAL AERONAUTICAL LABORATORY,
NarroNar Apvisory COMMITTEE FOR AERONAUTICS,
LawerLeY FrELD, VA., November 14, 1980.
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TABLE I i
VALUES OF R=+/z(1—2)
z R 1-z z R bt 4 !
0.00 [ 0,000 { .00 || 0.20 | 0.400 [ 0.80
b .00 .433 .75
02} .140 | .08 488 | .70
03 m 07 85 | .477 | .66
.04 .08 | .98 ] .49 | .60
05 F .mg | o.es AE L g7 | 86
0L 300 | . L500 | .50
16 | .37 | .8
S *
TABLE II
ANGULAR DISTORTION FOR THREE AIRFOILS i
i f « - g e
H t
i ¥ N.A.Q.A. N.AC.A.| T  IN.AC.AY N.A.C.A,
e | Clark ¥ |y I g | Clark ¥ gy
i 0.0 N Ve —.007] —.00I] 4.015
[ 1), ) SO . 4 B +. 018 . 025
.02 —0.088 | —0. 052 5 +.031 .026
V08 | —QLB| —.075] —.047 I S A .26l Jo2
o075 R .3 .88 048] .03
1 ~.000| -—.000| —.035 ] LY .
T R SO .95, . 099 L0850 L0144 | |
.2 ~ 08| —.036| —o14 || LO ... ;
S S SO - =018 fmeencmnna 1
TABLE 1T

BASIC DISTRIBUTIONS FOR THREE AIRFOILS

Pr Ordinates Pr Ordinates
L4
z N.A.C.A.| Clark ' N.A.C.A. # . iN.AC.A| Clark | N.4.C.
N Y | M # Y | A M
0.0 0.00 | 0.000! 0,000 0.5 | 0.008) o.5e2] p.202
0125|478 L8090, 170 .6 .830] m87| .10
.025 ced9 | .o ! l2m4 7 J785| 484 [016
) sy | e .5l B lemli swe|—los
7] cod0| el 378 .8 J532 ) gy - 116
1 jes2| 701, .44 205] ssal l170f —.097
.15 937 | weo8| 47 L0 (000 | .o0g[ -000
2] L0085 | .608 .810 || Integrated
8 v001 | T708] 462 f lrL.. . 804 | .b26, .206
4 LG58 | .6A37 403 _ !
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TABLE 1V

IDEAL ANGLE OF ATTACK AND I'.PEAL LIFT

N.ACA lNACL
‘ a.c dka

- — r i
Angieotwoll!t ............. . —0 5 158 - -
tack . 4* —_ 3
mmﬁ?"ea%‘é‘(‘m--.‘“’ i el O Z;a,! B
Norz.—. va angles aro measured trom the regu]a-r chard. j
TABLE V ST
ADDITIONAL DISTRIBUTION FOR; z>0.1
e A '
- - e
= | B = 2 + |18
, Q
e | S| P18 |
.026 6.24 Bolus oy . X ﬁ
.05 4.36 4 1.22 . . 30
078 3.52 ] 100 LU ]
_ - .1 §.00 N ] 817 J i
=T TABLE VI T

EFFICIENT OF LIFT
" CLARE Y

={. 0175c
.‘Pum =4.J~W-=5 .34 2 4 ¢ (per radlan) (z-o.wm

: —n'a. -5{8

= ‘—  N.ACAM-S
e =0.0125%

I - J ™= ( -
B .P.u.ﬂzgomq 6.33x 4 ¢ (per radian) (r=0.008)
e =860

- N.AGCA 84
--p T =0.0175
~ -0,
‘T'—"-:.P'" dgm q 5.34 7 4 ¢ (per radlsn) (:t 0085}
‘ap. =

-

- | PRESSURE NEAR THE LEADING EDGE AND CO-
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